Social and physical environmental determinants of childhood asthma

Sheryl Magzamen

Robert Wood Johnson Foundation Health & Society Scholars Program
Department of Population Health Sciences
University of Wisconsin – Madison
October 24, 2008
Today’s Presentation

- What is asthma?
- Asthma-related morbidity
- Brief primer on confounding
- Brief primer on causality
- Three highlighted studies
- Conclusions
What is Asthma?

Chronic respiratory disease with three clinical characteristics:

- Inflammation, resulting in wheezing, chest tightness, cough
- (Reversible) airflow obstruction
- Bronchial hyperresponsiveness
What Causes Asthma?

• Etiology of asthma is unclear

Genetic Component
- Parents with asthma
- Tendency towards allergic reactions (atopy)

Environmental Component
- Early childhood respiratory infections
- Exposure to aeroallergens or viruses in early life

Photo Source: NIEHS
Asthma-Related Morbidity = \(f \)

- Social Environment
- Built Environment
- Political/Economic Environment
- Medical Care
- Natural Environment
- Host Factors
Pediatric Asthma

• Most common chronic disease of childhood

• Single most prevalent cause of childhood disability

• Disproportionate morbidity levels among socially disadvantaged
Asthma-Related Morbidity

• Measures of asthma-related morbidity:

 • 14 million missed days of school

 • 3rd ranking cause of hospitalizations for children ages 15 and under

 • Over 2 million ED visits for asthma

• Consistently higher among socially disadvantaged urban children

Unclear if this relationship is driven by race or socioeconomic status (SES)
What is Confounding?
Research Question

Socio/Demographic Characteristics

Proximity to Freeways

Asthma Event

Nelson Institute Community Environmental Forum

Oct 24, 2008
Minority and poor children are more likely to:

• Live in areas with high traffic density [Gunier et al. 2003; Meng et al. 2006]

• Reside near point source air pollution sites [Chakraborty and Zandbergen 2007]

• Attend schools located near high traffic volume roads [Green et al. 2004]
What is Causality?

Adolescents w/ Asthma

< 500ft from Fwy?

Y

THEN

WE

GO BACK

IN TIME

Emergency Care Utilization?

Y

N

Adolescents w/ Asthma

< 500ft from Fwy?

N

Emergency Care Utilization?

Y

N
Randomize Adolescents w/ Asthma dx to be…

500ft from Fwy?

Emergency Care Utilization?

Emergency Care Utilization?
Assessing Causality

If we can’t go back in time or randomize, other options:

• Natural experiments
 • Isolated change in one aspect of the environment when all other factors remain the same

• Statistical methods
The Natural Experiment

Friedman et al. (2001):

• Compared number of childhood asthma acute care events in the Atlanta Metro Area:
 • 17 days of the 1996 Summer Olympic Games
 • 4 weeks directly prior to and after the Games

Rationale: Increase in alternative transportation options for the Olympics, including: 24 hour public transportation, addition of 1,000 buses, and encouragement of telecommuting.
The Natural Experiment: Results

- 46% decrease in acute asthma events among Medicaid children during Summer Games compared to baseline periods.
- Non-asthma acute events decreased 3% during Summer Games compared to baseline periods.

Table 1. Changes in Pollutant Levels from Baseline to Summer Games

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-hr Peak O3</td>
<td>-27.9%*</td>
</tr>
<tr>
<td>CO</td>
<td>-18.5%*</td>
</tr>
<tr>
<td>NO2</td>
<td>-6.8%</td>
</tr>
<tr>
<td>PM10</td>
<td>-16.1%*</td>
</tr>
<tr>
<td>SO2</td>
<td>+22.1%</td>
</tr>
</tbody>
</table>
The Natural Experiment: Results

Table 2. Changes in Traffic from Baseline to Summer Games

<table>
<thead>
<tr>
<th>Traffic Metric</th>
<th>Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekday 1-hr morning peak traffic counts</td>
<td>-22.5%*</td>
</tr>
<tr>
<td>Weekend morning peak traffic counts</td>
<td>-9.7%*</td>
</tr>
<tr>
<td>Public transportation ridership</td>
<td>217%*</td>
</tr>
</tbody>
</table>

Conclusion: Alternative transportation options for the 1996 Summer Olympics reduced air pollution (particularly ozone) linked to asthma exacerbations.

Follow-Up: Similar findings for the relation between traffic mitigation and asthma hospitalizations for the 2002 Summer Asian Games in Busan, South Korea (Lee et al. 2007)
The Natural Experiment: Part II

Tonne et al. (2008):

• Investigated the impact of London’s Congestion Charging Scheme (CCS) on:
 • Levels of Traffic Pollutants -- Life Expectancy – SES Inequalities

Findings:

- An estimated 1888 years of life gained from implementation of CCS
- Lower SES areas had greater decreases in air pollution and greater increases in life expectancy compared to high SES areas
The Instrument

Kim et al. (2004):

- Compared information on respiratory symptoms and asthma diagnosis for elementary school children who:
 - Attended elementary schools upwind of major roadway
 - Attended elementary schools downwind of a major roadway

Rationale: The natural environment can greatly influence the concentration of pollution in near freeway environments; can assume that socioeconomic factors (race, SES) are distributed similarly for upwind/downwind schools.
• Traffic-related air pollutants were measured at each of the school sites.

• Concentration of several traffic-related air pollutants were higher at downwind schools, compared to upwind schools or schools >300m from a major traffic source.

Source: Kim et al. (2004)
The Instrument: Results

Findings: Modest but significant increases in asthma diagnosed in the previous 12 months and exposure to NOx for girls who lived in current home for 1 year or more

Table 3. Demographics for Study Participants

<table>
<thead>
<tr>
<th></th>
<th>Downwind FWY Schools</th>
<th>Upwind/Far FWY Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>7.0</td>
<td>13.4</td>
</tr>
<tr>
<td>Latino</td>
<td>47.6</td>
<td>41.2</td>
</tr>
<tr>
<td>HHD @/below FPL</td>
<td>31.8</td>
<td>31.0</td>
</tr>
<tr>
<td>Biological Mom with asthma</td>
<td>9.5</td>
<td>13.7</td>
</tr>
<tr>
<td>Smoker in HHD since child’s birth</td>
<td>13.1</td>
<td>20.6</td>
</tr>
</tbody>
</table>

Nelson Institute Community Environmental Forum
Conclusion: Downwind location of schools is an important determinant of increased exposure to traffic pollutants.

Epidemiologic issues of interest:

Measurement issues. Characterization of the physical environment (i.e. air pollution) is a crucial element in the determination of the exposure/disease relationship.

Duration/location of exposure. Characterization of both home and school environments are important factors in the determination of overall exposure levels.
An estimated 25,000 children were living or attending school in lower Manhattan on 9/11.

Thousands more were in the path of the plume of building debris and smoke and exposed to particulates and toxic substances.

[Thomas et al. 2008]
Disaster Epidemiology

Thomas et al. (2008):

- Examined respiratory health outcomes and disaster-related exposure among children enrolled in the World Trade Center Health Registry

Results:

- 45% of children reported dustcloud exposure on 9/11
- 6% of children had a new physician diagnosis of asthma post 9/11
- Dust cloud exposure was significantly related to new asthma diagnosis
Conclusions

• Asthma is a complex, multifaceted disease

• Asthma-related morbidity is associated with an array of factors, many of which are hard to disentangle: particularly sociodemographic factors and environmental exposures

• Several events (planned and unplanned) as well as creative study designs have highlighted ways to understand the independent exposure of the physical environment on asthma exacerbation
 • So.....What do we do?
Thank You

Questions/Comments/Random Musings:

magzamen@wisc.edu